ARM - ADC cleanup (#8385)

* Update switch to array to allow custom values

* Add adc keymap

* update docs to reflect alignment of default 10 bit

* start conversion to USE_ADCVn

* samplerate is hella wrong...stub out for now

* basic f1 and f4 functionality

* Tidy up current changes

* Restore old pinToMux function

* Add back sample rate for supported platforms

* F0 compile fixes

* wordsmithery

Co-Authored-By: Ryan <fauxpark@gmail.com>

* Remove reference to avr only function

Co-authored-by: Ryan <fauxpark@gmail.com>
This commit is contained in:
Joel Challis 2020-03-17 00:29:52 +00:00 committed by GitHub
parent 7aff643031
commit 567bfc97ac
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 259 additions and 164 deletions

View file

@ -2,7 +2,7 @@
QMK can leverage the Analog-to-Digital Converter (ADC) on supported MCUs to measure voltages on certain pins. This can be useful for implementing things such as battery level indicators for Bluetooth keyboards, or volume controls using a potentiometer, as opposed to a [rotary encoder](feature_encoders.md). QMK can leverage the Analog-to-Digital Converter (ADC) on supported MCUs to measure voltages on certain pins. This can be useful for implementing things such as battery level indicators for Bluetooth keyboards, or volume controls using a potentiometer, as opposed to a [rotary encoder](feature_encoders.md).
This driver currently supports both AVR and a limited selection of ARM devices. On AVR devices, the values returned are 10-bit integers (0-1023) mapped between 0V and VCC (usually 5V or 3.3V). On supported ARM devices, there is more flexibility in control of operation through `#define`s, but by default the values returned are 12-bit integers (0-4095) mapped between 0V and VCC (usually 3.3V). This driver currently supports both AVR and a limited selection of ARM devices. The values returned are 10-bit integers (0-1023) mapped between 0V and VCC (usually 5V or 3.3V for AVR, 3.3V only for ARM), however on ARM there is more flexibility in control of operation through `#define`s if you need more precision.
## Usage ## Usage

View file

@ -14,12 +14,74 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>. * along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ */
#include "analog.h"
#include "quantum.h" #include "quantum.h"
#include "analog.h"
#include "ch.h"
#include <hal.h>
#if !HAL_USE_ADC
# error "You need to set HAL_USE_ADC to TRUE in your halconf.h to use the ADC."
#endif
#if !STM32_ADC_USE_ADC1 && !STM32_ADC_USE_ADC2 && !STM32_ADC_USE_ADC3 && !STM32_ADC_USE_ADC4
# error "You need to set one of the 'STM32_ADC_USE_ADCx' settings to TRUE in your mcuconf.h to use the ADC."
#endif
#if STM32_ADC_DUAL_MODE
# error "STM32 ADC Dual Mode is not supported at this time."
#endif
#if STM32_ADCV3_OVERSAMPLING
# error "STM32 ADCV3 Oversampling is not supported at this time."
#endif
// Otherwise assume V3
#if defined(STM32F0XX) || defined(STM32L0XX)
# define USE_ADCV1
#elif defined(STM32F1XX) || defined(STM32F2XX) || defined(STM32F4XX)
# define USE_ADCV2
#endif
// BODGE to make v2 look like v1,3 and 4
#ifdef USE_ADCV2
# if !defined(ADC_SMPR_SMP_1P5) && defined(ADC_SAMPLE_3)
# define ADC_SMPR_SMP_1P5 ADC_SAMPLE_3
# define ADC_SMPR_SMP_7P5 ADC_SAMPLE_15
# define ADC_SMPR_SMP_13P5 ADC_SAMPLE_28
# define ADC_SMPR_SMP_28P5 ADC_SAMPLE_56
# define ADC_SMPR_SMP_41P5 ADC_SAMPLE_84
# define ADC_SMPR_SMP_55P5 ADC_SAMPLE_112
# define ADC_SMPR_SMP_71P5 ADC_SAMPLE_144
# define ADC_SMPR_SMP_239P5 ADC_SAMPLE_480
# endif
# if !defined(ADC_SMPR_SMP_1P5) && defined(ADC_SAMPLE_1P5)
# define ADC_SMPR_SMP_1P5 ADC_SAMPLE_1P5
# define ADC_SMPR_SMP_7P5 ADC_SAMPLE_7P5
# define ADC_SMPR_SMP_13P5 ADC_SAMPLE_13P5
# define ADC_SMPR_SMP_28P5 ADC_SAMPLE_28P5
# define ADC_SMPR_SMP_41P5 ADC_SAMPLE_41P5
# define ADC_SMPR_SMP_55P5 ADC_SAMPLE_55P5
# define ADC_SMPR_SMP_71P5 ADC_SAMPLE_71P5
# define ADC_SMPR_SMP_239P5 ADC_SAMPLE_239P5
# endif
// we still sample at 12bit, but scale down to the requested bit range
# define ADC_CFGR1_RES_12BIT 12
# define ADC_CFGR1_RES_10BIT 10
# define ADC_CFGR1_RES_8BIT 8
# define ADC_CFGR1_RES_6BIT 6
#endif
/* User configurable ADC options */ /* User configurable ADC options */
#ifndef ADC_CIRCULAR_BUFFER #ifndef ADC_COUNT
# define ADC_CIRCULAR_BUFFER FALSE # if defined(STM32F0XX) || defined(STM32F1XX) || defined(STM32F4XX)
# define ADC_COUNT 1
# elif defined(STM32F3XX)
# define ADC_COUNT 4
# else
# error "ADC_COUNT has not been set for this ARM microcontroller."
# endif
#endif #endif
#ifndef ADC_NUM_CHANNELS #ifndef ADC_NUM_CHANNELS
@ -29,7 +91,7 @@
#endif #endif
#ifndef ADC_BUFFER_DEPTH #ifndef ADC_BUFFER_DEPTH
# define ADC_BUFFER_DEPTH 2 # define ADC_BUFFER_DEPTH 1
#endif #endif
// For more sampling rate options, look at hal_adc_lld.h in ChibiOS // For more sampling rate options, look at hal_adc_lld.h in ChibiOS
@ -39,68 +101,128 @@
// Options are 12, 10, 8, and 6 bit. // Options are 12, 10, 8, and 6 bit.
#ifndef ADC_RESOLUTION #ifndef ADC_RESOLUTION
# define ADC_RESOLUTION ADC_CFGR1_RES_12BIT # define ADC_RESOLUTION ADC_CFGR1_RES_10BIT
#endif #endif
static ADCConfig adcCfg = {}; static ADCConfig adcCfg = {};
static adcsample_t sampleBuffer[ADC_NUM_CHANNELS * ADC_BUFFER_DEPTH]; static adcsample_t sampleBuffer[ADC_NUM_CHANNELS * ADC_BUFFER_DEPTH];
// Initialize to max number of ADCs, set to empty object to initialize all to false. // Initialize to max number of ADCs, set to empty object to initialize all to false.
#if defined(STM32F0XX) static bool adcInitialized[ADC_COUNT] = {};
static bool adcInitialized[1] = {};
#elif defined(STM32F3XX)
static bool adcInitialized[4] = {};
#else
# error "adcInitialized has not been implemented for this ARM microcontroller."
#endif
// TODO: add back TR handling???
static ADCConversionGroup adcConversionGroup = { static ADCConversionGroup adcConversionGroup = {
ADC_CIRCULAR_BUFFER, .circular = FALSE,
(uint16_t)(ADC_NUM_CHANNELS), .num_channels = (uint16_t)(ADC_NUM_CHANNELS),
NULL, // No end callback #if defined(USE_ADCV1)
NULL, // No error callback .cfgr1 = ADC_CFGR1_CONT | ADC_RESOLUTION,
#if defined(STM32F0XX) .smpr = ADC_SAMPLING_RATE,
ADC_CFGR1_CONT | ADC_RESOLUTION, #elif defined(USE_ADCV2)
ADC_TR(0, 0).ADC_SAMPLING_RATE, # if !defined(STM32F1XX)
NULL, // Doesn't specify a default channel .cr2 = ADC_CR2_SWSTART, // F103 seem very unhappy with, F401 seems very unhappy without...
#elif defined(STM32F3XX) # endif
ADC_CFGR_CONT | ADC_RESOLUTION, .smpr2 = ADC_SMPR2_SMP_AN0(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN1(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN2(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN3(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN4(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN5(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN6(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN7(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN8(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN9(ADC_SAMPLING_RATE),
ADC_TR(0, 4095), .smpr1 = ADC_SMPR1_SMP_AN10(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN11(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN12(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN13(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN14(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN15(ADC_SAMPLING_RATE),
{ #else
ADC_SAMPLING_RATE, .cfgr = ADC_CFGR_CONT | ADC_RESOLUTION,
ADC_SAMPLING_RATE, .smpr = {ADC_SMPR1_SMP_AN0(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN1(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN2(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN3(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN4(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN5(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN6(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN7(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN8(ADC_SAMPLING_RATE) | ADC_SMPR1_SMP_AN9(ADC_SAMPLING_RATE), ADC_SMPR2_SMP_AN10(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN11(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN12(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN13(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN14(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN15(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN16(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN17(ADC_SAMPLING_RATE) | ADC_SMPR2_SMP_AN18(ADC_SAMPLING_RATE)},
},
{
0, // Doesn't specify a default channel
0,
0,
0,
},
#endif #endif
}; };
static inline ADCDriver* intToADCDriver(uint8_t adcInt) { // clang-format off
ADCDriver* target; __attribute__((weak)) adc_mux pinToMux(pin_t pin) {
switch (pin) {
switch (adcInt) { #if defined(STM32F0XX)
// clang-format off case A0: return TO_MUX( ADC_CHSELR_CHSEL0, 0 );
#if STM32_ADC_USE_ADC1 case A1: return TO_MUX( ADC_CHSELR_CHSEL1, 0 );
case 0: target = &ADCD1; break; case A2: return TO_MUX( ADC_CHSELR_CHSEL2, 0 );
case A3: return TO_MUX( ADC_CHSELR_CHSEL3, 0 );
case A4: return TO_MUX( ADC_CHSELR_CHSEL4, 0 );
case A5: return TO_MUX( ADC_CHSELR_CHSEL5, 0 );
case A6: return TO_MUX( ADC_CHSELR_CHSEL6, 0 );
case A7: return TO_MUX( ADC_CHSELR_CHSEL7, 0 );
case B0: return TO_MUX( ADC_CHSELR_CHSEL8, 0 );
case B1: return TO_MUX( ADC_CHSELR_CHSEL9, 0 );
case C0: return TO_MUX( ADC_CHSELR_CHSEL10, 0 );
case C1: return TO_MUX( ADC_CHSELR_CHSEL11, 0 );
case C2: return TO_MUX( ADC_CHSELR_CHSEL12, 0 );
case C3: return TO_MUX( ADC_CHSELR_CHSEL13, 0 );
case C4: return TO_MUX( ADC_CHSELR_CHSEL14, 0 );
case C5: return TO_MUX( ADC_CHSELR_CHSEL15, 0 );
#elif defined(STM32F3XX)
case A0: return TO_MUX( ADC_CHANNEL_IN1, 0 );
case A1: return TO_MUX( ADC_CHANNEL_IN2, 0 );
case A2: return TO_MUX( ADC_CHANNEL_IN3, 0 );
case A3: return TO_MUX( ADC_CHANNEL_IN4, 0 );
case A4: return TO_MUX( ADC_CHANNEL_IN1, 1 );
case A5: return TO_MUX( ADC_CHANNEL_IN2, 1 );
case A6: return TO_MUX( ADC_CHANNEL_IN3, 1 );
case A7: return TO_MUX( ADC_CHANNEL_IN4, 1 );
case B0: return TO_MUX( ADC_CHANNEL_IN12, 2 );
case B1: return TO_MUX( ADC_CHANNEL_IN1, 2 );
case B2: return TO_MUX( ADC_CHANNEL_IN12, 1 );
case B12: return TO_MUX( ADC_CHANNEL_IN2, 3 );
case B13: return TO_MUX( ADC_CHANNEL_IN3, 3 );
case B14: return TO_MUX( ADC_CHANNEL_IN4, 3 );
case B15: return TO_MUX( ADC_CHANNEL_IN5, 3 );
case C0: return TO_MUX( ADC_CHANNEL_IN6, 0 ); // Can also be ADC2
case C1: return TO_MUX( ADC_CHANNEL_IN7, 0 ); // Can also be ADC2
case C2: return TO_MUX( ADC_CHANNEL_IN8, 0 ); // Can also be ADC2
case C3: return TO_MUX( ADC_CHANNEL_IN9, 0 ); // Can also be ADC2
case C4: return TO_MUX( ADC_CHANNEL_IN5, 1 );
case C5: return TO_MUX( ADC_CHANNEL_IN11, 1 );
case D8: return TO_MUX( ADC_CHANNEL_IN12, 3 );
case D9: return TO_MUX( ADC_CHANNEL_IN13, 3 );
case D10: return TO_MUX( ADC_CHANNEL_IN7, 2 ); // Can also be ADC4
case D11: return TO_MUX( ADC_CHANNEL_IN8, 2 ); // Can also be ADC4
case D12: return TO_MUX( ADC_CHANNEL_IN9, 2 ); // Can also be ADC4
case D13: return TO_MUX( ADC_CHANNEL_IN10, 2 ); // Can also be ADC4
case D14: return TO_MUX( ADC_CHANNEL_IN11, 2 ); // Can also be ADC4
case E7: return TO_MUX( ADC_CHANNEL_IN13, 2 );
case E8: return TO_MUX( ADC_CHANNEL_IN6, 2 ); // Can also be ADC4
case E9: return TO_MUX( ADC_CHANNEL_IN2, 2 );
case E10: return TO_MUX( ADC_CHANNEL_IN14, 2 );
case E11: return TO_MUX( ADC_CHANNEL_IN15, 2 );
case E12: return TO_MUX( ADC_CHANNEL_IN16, 2 );
case E13: return TO_MUX( ADC_CHANNEL_IN3, 2 );
case E14: return TO_MUX( ADC_CHANNEL_IN1, 3 );
case E15: return TO_MUX( ADC_CHANNEL_IN2, 3 );
case F2: return TO_MUX( ADC_CHANNEL_IN10, 0 ); // Can also be ADC2
case F4: return TO_MUX( ADC_CHANNEL_IN5, 0 );
#elif defined(STM32F4XX) // TODO: add all pins
case A0: return TO_MUX( ADC_CHANNEL_IN0, 0 );
//case A1: return TO_MUX( ADC_CHANNEL_IN1, 0 );
#elif defined(STM32F1XX) // TODO: add all pins
case A0: return TO_MUX( ADC_CHANNEL_IN0, 0 );
#endif #endif
#if STM32_ADC_USE_ADC2
case 1: target = &ADCD2; break;
#endif
#if STM32_ADC_USE_ADC3
case 2: target = &ADCD3; break;
#endif
#if STM32_ADC_USE_ADC4
case 3: target = &ADCD4; break;
#endif
default: target = NULL; break;
// clang-format on
} }
return target; // return an adc that would never be used so intToADCDriver will bail out
return TO_MUX(0, 0xFF);
}
// clang-format on
static inline ADCDriver* intToADCDriver(uint8_t adcInt) {
switch (adcInt) {
#if STM32_ADC_USE_ADC1
case 0:
return &ADCD1;
#endif
#if STM32_ADC_USE_ADC2
case 1:
return &ADCD2;
#endif
#if STM32_ADC_USE_ADC3
case 2:
return &ADCD3;
#endif
#if STM32_ADC_USE_ADC4
case 3:
return &ADCD4;
#endif
}
return NULL;
} }
static inline void manageAdcInitializationDriver(uint8_t adc, ADCDriver* adcDriver) { static inline void manageAdcInitializationDriver(uint8_t adc, ADCDriver* adcDriver) {
@ -110,98 +232,45 @@ static inline void manageAdcInitializationDriver(uint8_t adc, ADCDriver* adcDriv
} }
} }
static inline void manageAdcInitialization(uint8_t adc) { manageAdcInitializationDriver(adc, intToADCDriver(adc)); } int16_t analogReadPin(pin_t pin) {
palSetLineMode(pin, PAL_MODE_INPUT_ANALOG);
pin_and_adc pinToMux(pin_t pin) { return adc_read(pinToMux(pin));
switch (pin) {
// clang-format off
#if defined(STM32F0XX)
case A0: return (pin_and_adc){ ADC_CHANNEL_IN0, 0 };
case A1: return (pin_and_adc){ ADC_CHANNEL_IN1, 0 };
case A2: return (pin_and_adc){ ADC_CHANNEL_IN2, 0 };
case A3: return (pin_and_adc){ ADC_CHANNEL_IN3, 0 };
case A4: return (pin_and_adc){ ADC_CHANNEL_IN4, 0 };
case A5: return (pin_and_adc){ ADC_CHANNEL_IN5, 0 };
case A6: return (pin_and_adc){ ADC_CHANNEL_IN6, 0 };
case A7: return (pin_and_adc){ ADC_CHANNEL_IN7, 0 };
case B0: return (pin_and_adc){ ADC_CHANNEL_IN8, 0 };
case B1: return (pin_and_adc){ ADC_CHANNEL_IN9, 0 };
case C0: return (pin_and_adc){ ADC_CHANNEL_IN10, 0 };
case C1: return (pin_and_adc){ ADC_CHANNEL_IN11, 0 };
case C2: return (pin_and_adc){ ADC_CHANNEL_IN12, 0 };
case C3: return (pin_and_adc){ ADC_CHANNEL_IN13, 0 };
case C4: return (pin_and_adc){ ADC_CHANNEL_IN14, 0 };
case C5: return (pin_and_adc){ ADC_CHANNEL_IN15, 0 };
#elif defined(STM32F3XX)
case A0: return (pin_and_adc){ ADC_CHANNEL_IN1, 0 };
case A1: return (pin_and_adc){ ADC_CHANNEL_IN2, 0 };
case A2: return (pin_and_adc){ ADC_CHANNEL_IN3, 0 };
case A3: return (pin_and_adc){ ADC_CHANNEL_IN4, 0 };
case A4: return (pin_and_adc){ ADC_CHANNEL_IN1, 1 };
case A5: return (pin_and_adc){ ADC_CHANNEL_IN2, 1 };
case A6: return (pin_and_adc){ ADC_CHANNEL_IN3, 1 };
case A7: return (pin_and_adc){ ADC_CHANNEL_IN4, 1 };
case B0: return (pin_and_adc){ ADC_CHANNEL_IN12, 2 };
case B1: return (pin_and_adc){ ADC_CHANNEL_IN1, 2 };
case B2: return (pin_and_adc){ ADC_CHANNEL_IN12, 1 };
case B12: return (pin_and_adc){ ADC_CHANNEL_IN2, 3 };
case B13: return (pin_and_adc){ ADC_CHANNEL_IN3, 3 };
case B14: return (pin_and_adc){ ADC_CHANNEL_IN4, 3 };
case B15: return (pin_and_adc){ ADC_CHANNEL_IN5, 3 };
case C0: return (pin_and_adc){ ADC_CHANNEL_IN6, 0 }; // Can also be ADC2
case C1: return (pin_and_adc){ ADC_CHANNEL_IN7, 0 }; // Can also be ADC2
case C2: return (pin_and_adc){ ADC_CHANNEL_IN8, 0 }; // Can also be ADC2
case C3: return (pin_and_adc){ ADC_CHANNEL_IN9, 0 }; // Can also be ADC2
case C4: return (pin_and_adc){ ADC_CHANNEL_IN5, 1 };
case C5: return (pin_and_adc){ ADC_CHANNEL_IN11, 1 };
case D8: return (pin_and_adc){ ADC_CHANNEL_IN12, 3 };
case D9: return (pin_and_adc){ ADC_CHANNEL_IN13, 3 };
case D10: return (pin_and_adc){ ADC_CHANNEL_IN7, 2 }; // Can also be ADC4
case D11: return (pin_and_adc){ ADC_CHANNEL_IN8, 2 }; // Can also be ADC4
case D12: return (pin_and_adc){ ADC_CHANNEL_IN9, 2 }; // Can also be ADC4
case D13: return (pin_and_adc){ ADC_CHANNEL_IN10, 2 }; // Can also be ADC4
case D14: return (pin_and_adc){ ADC_CHANNEL_IN11, 2 }; // Can also be ADC4
case E7: return (pin_and_adc){ ADC_CHANNEL_IN13, 2 };
case E8: return (pin_and_adc){ ADC_CHANNEL_IN6, 2 }; // Can also be ADC4
case E9: return (pin_and_adc){ ADC_CHANNEL_IN2, 2 };
case E10: return (pin_and_adc){ ADC_CHANNEL_IN14, 2 };
case E11: return (pin_and_adc){ ADC_CHANNEL_IN15, 2 };
case E12: return (pin_and_adc){ ADC_CHANNEL_IN16, 2 };
case E13: return (pin_and_adc){ ADC_CHANNEL_IN3, 2 };
case E14: return (pin_and_adc){ ADC_CHANNEL_IN1, 3 };
case E15: return (pin_and_adc){ ADC_CHANNEL_IN2, 3 };
case F2: return (pin_and_adc){ ADC_CHANNEL_IN10, 0 }; // Can also be ADC2
case F4: return (pin_and_adc){ ADC_CHANNEL_IN5, 0 };
#else
#error "An ADC pin-to-mux configuration has not been specified for this microcontroller."
#endif
default: return (pin_and_adc){ 0, 0 };
// clang-format on
}
} }
adcsample_t analogReadPin(pin_t pin) { return adc_read(pinToMux(pin)); } int16_t analogReadPinAdc(pin_t pin, uint8_t adc) {
palSetLineMode(pin, PAL_MODE_INPUT_ANALOG);
adcsample_t analogReadPinAdc(pin_t pin, uint8_t adc) { adc_mux target = pinToMux(pin);
pin_and_adc target = pinToMux(pin); target.adc = adc;
target.adc = adc;
return adc_read(target); return adc_read(target);
} }
adcsample_t adc_read(pin_and_adc mux) { int16_t adc_read(adc_mux mux) {
#if defined(STM32F0XX) #if defined(USE_ADCV1)
adcConversionGroup.sqr = ADC_CHSELR_CHSEL1; // TODO: fix previous assumption of only 1 input...
#elif defined(STM32F3XX) adcConversionGroup.chselr = 1 << mux.input; /*no macro to convert N to ADC_CHSELR_CHSEL1*/
adcConversionGroup.sqr[0] = ADC_SQR1_SQ1_N(mux.pin); #elif defined(USE_ADCV2)
adcConversionGroup.sqr3 = ADC_SQR3_SQ1_N(mux.input);
#else #else
# error "adc_read has not been updated to support this ARM microcontroller." adcConversionGroup.sqr[0] = ADC_SQR1_SQ1_N(mux.input);
#endif #endif
ADCDriver* targetDriver = intToADCDriver(mux.adc); ADCDriver* targetDriver = intToADCDriver(mux.adc);
if (!targetDriver) {
return 0;
}
manageAdcInitializationDriver(mux.adc, targetDriver); manageAdcInitializationDriver(mux.adc, targetDriver);
if (adcConvert(targetDriver, &adcConversionGroup, &sampleBuffer[0], ADC_BUFFER_DEPTH) != MSG_OK) {
return 0;
}
adcConvert(targetDriver, &adcConversionGroup, &sampleBuffer[0], ADC_BUFFER_DEPTH); #ifdef USE_ADCV2
adcsample_t* result = sampleBuffer; // fake 12-bit -> N-bit scale
return (*sampleBuffer) >> (12 - ADC_RESOLUTION);
return *result; #else
// already handled as part of adcConvert
return *sampleBuffer;
#endif
} }

View file

@ -16,42 +16,26 @@
#pragma once #pragma once
#include <stdint.h>
#include "quantum.h" #include "quantum.h"
#include "ch.h"
#include <hal.h>
#if !defined(STM32F0XX) && !defined(STM32F3XX) #ifdef __cplusplus
# error "Only STM23F0 and STM32F3 devices have ADC support in QMK at this time." extern "C" {
#endif
#if !HAL_USE_ADC
# error "You need to set HAL_USE_ADC to TRUE in your halconf.h to use the ADC."
#endif
#if !STM32_ADC_USE_ADC1 && !STM32_ADC_USE_ADC2 && !STM32_ADC_USE_ADC3 && !STM32_ADC_USE_ADC4
# error "You need to set one of the 'STM32_ADC_USE_ADCx' settings to TRUE in your mcuconf.h to use the ADC."
#endif
#if STM32_ADC_DUAL_MODE
# error "STM32 ADC Dual Mode is not supported at this time."
#endif
#if STM32_ADCV3_OVERSAMPLING
# error "STM32 ADCV3 Oversampling is not supported at this time."
#endif #endif
typedef struct { typedef struct {
pin_t pin; uint16_t input;
uint8_t adc; uint8_t adc;
} pin_and_adc; } adc_mux;
#define PIN_AND_ADC(p, a) \ #define TO_MUX(i, a) \
(pin_and_adc) { p, a } (adc_mux) { i, a }
// analogReference has been left un-defined for ARM devices. int16_t analogReadPin(pin_t pin);
// void analogReference(uint8_t mode); int16_t analogReadPinAdc(pin_t pin, uint8_t adc);
adc_mux pinToMux(pin_t pin);
adcsample_t analogReadPin(pin_t pin); int16_t adc_read(adc_mux mux);
adcsample_t analogReadPinAdc(pin_t pin, uint8_t adc);
pin_and_adc pinToMux(pin_t pin);
adcsample_t adc_read(pin_and_adc mux); #ifdef __cplusplus
}
#endif

View file

@ -0,0 +1 @@
#pragma once

View file

@ -0,0 +1,38 @@
#include QMK_KEYBOARD_H
#include "analog.h"
#include <stdio.h>
#ifndef ADC_PIN
# define ADC_PIN A0
#endif
enum custom_keycodes {
ADC_SAMPLE = SAFE_RANGE,
};
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
LAYOUT(ADC_SAMPLE) //
};
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case ADC_SAMPLE:
if (record->event.pressed) {
int16_t val = analogReadPin(ADC_PIN);
char buffer [50];
sprintf(buffer, "ADC:%u\n", val);
#ifdef CONSOLE_ENABLE
printf(buffer);
#else
SEND_STRING(buffer);
#endif
}
break;
}
return false;
};
// adc_mux pinToMux(pin_t pin) {
// return TO_MUX( ADC_CHANNEL_IN1, 0 );
// };

View file

@ -0,0 +1,3 @@
SRC += analog.c
CONSOLE_ENABLE = yes