Add encoder abstraction. (#21548)

This commit is contained in:
Nick Brassel 2024-02-18 21:17:15 +11:00 committed by GitHub
parent 2eb9ff8efd
commit 9d9cdaaa2d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
50 changed files with 863 additions and 653 deletions

View file

@ -886,9 +886,24 @@ ifeq ($(strip $(BLUETOOTH_ENABLE)), yes)
endif
endif
ENCODER_ENABLE ?= no
ENCODER_DRIVER ?= quadrature
VALID_ENCODER_DRIVER_TYPES := quadrature custom
ifeq ($(strip $(ENCODER_ENABLE)), yes)
ifeq ($(filter $(ENCODER_DRIVER),$(VALID_ENCODER_DRIVER_TYPES)),)
$(call CATASTROPHIC_ERROR,Invalid ENCODER_DRIVER,ENCODER_DRIVER="$(ENCODER_DRIVER)" is not a valid encoder driver)
endif
SRC += $(QUANTUM_DIR)/encoder.c
OPT_DEFS += -DENCODER_ENABLE
OPT_DEFS += -DENCODER_DRIVER_$(strip $(shell echo $(ENCODER_DRIVER) | tr '[:lower:]' '[:upper:]'))
COMMON_VPATH += $(PLATFORM_PATH)/$(PLATFORM_KEY)/$(DRIVER_DIR)/encoder
COMMON_VPATH += $(DRIVER_PATH)/encoder
ifneq ($(strip $(ENCODER_DRIVER)), custom)
SRC += encoder_$(strip $(ENCODER_DRIVER)).c
endif
ifeq ($(strip $(ENCODER_MAP_ENABLE)), yes)
OPT_DEFS += -DENCODER_MAP_ENABLE
endif

View file

@ -21,6 +21,7 @@
"DEBOUNCE_TYPE": {"info_key": "build.debounce_type"},
"EEPROM_DRIVER": {"info_key": "eeprom.driver"},
"ENCODER_ENABLE": {"info_key": "encoder.enabled", "value_type": "bool"},
"ENCODER_DRIVER": {"info_key": "encoder.driver"},
"FIRMWARE_FORMAT": {"info_key": "build.firmware_format"},
"KEYBOARD_SHARED_EP": {"info_key": "usb.shared_endpoint.keyboard", "value_type": "bool"},
"LAYOUTS": {"info_key": "community_layouts", "value_type": "list"},

View file

@ -6,6 +6,10 @@
"encoder_config": {
"type": "object",
"properties": {
"driver": {
"type": "string",
"enum": ["quadrature", "custom"]
},
"rotary": {
"type": "array",
"items": {

View file

@ -0,0 +1,213 @@
// Copyright 2018 Jack Humbert <jack.humb@gmail.com>
// Copyright 2018-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#include <stdint.h>
#include "encoder.h"
#include "gpio.h"
#include "keyboard.h"
#include "action.h"
#include "keycodes.h"
#include "wait.h"
#ifdef SPLIT_KEYBOARD
# include "split_util.h"
#endif
// for memcpy
#include <string.h>
#if !defined(ENCODER_RESOLUTIONS) && !defined(ENCODER_RESOLUTION)
# define ENCODER_RESOLUTION 4
#endif
#undef ENCODER_DEFAULT_PIN_API_IMPL
#if defined(ENCODERS_PAD_A) && defined(ENCODERS_PAD_B)
// Inform the quadrature driver that it needs to implement pin init/read functions
# define ENCODER_DEFAULT_PIN_API_IMPL
#endif
extern volatile bool isLeftHand;
__attribute__((weak)) void encoder_quadrature_init_pin(uint8_t index, bool pad_b);
__attribute__((weak)) uint8_t encoder_quadrature_read_pin(uint8_t index, bool pad_b);
#ifdef ENCODER_DEFAULT_PIN_API_IMPL
static pin_t encoders_pad_a[NUM_ENCODERS_MAX_PER_SIDE] = ENCODERS_PAD_A;
static pin_t encoders_pad_b[NUM_ENCODERS_MAX_PER_SIDE] = ENCODERS_PAD_B;
__attribute__((weak)) void encoder_wait_pullup_charge(void) {
wait_us(100);
}
__attribute__((weak)) void encoder_quadrature_init_pin(uint8_t index, bool pad_b) {
pin_t pin = pad_b ? encoders_pad_b[index] : encoders_pad_a[index];
if (pin != NO_PIN) {
gpio_set_pin_input_high(pin);
}
}
__attribute__((weak)) uint8_t encoder_quadrature_read_pin(uint8_t index, bool pad_b) {
pin_t pin = pad_b ? encoders_pad_b[index] : encoders_pad_a[index];
if (pin != NO_PIN) {
return gpio_read_pin(pin) ? 1 : 0;
}
return 0;
}
#endif // ENCODER_DEFAULT_PIN_API_IMPL
#ifdef ENCODER_RESOLUTIONS
static uint8_t encoder_resolutions[NUM_ENCODERS] = ENCODER_RESOLUTIONS;
#endif
#ifndef ENCODER_DIRECTION_FLIP
# define ENCODER_CLOCKWISE true
# define ENCODER_COUNTER_CLOCKWISE false
#else
# define ENCODER_CLOCKWISE false
# define ENCODER_COUNTER_CLOCKWISE true
#endif
static int8_t encoder_LUT[] = {0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1, 0};
static uint8_t encoder_state[NUM_ENCODERS] = {0};
static int8_t encoder_pulses[NUM_ENCODERS] = {0};
// encoder counts
static uint8_t thisCount;
#ifdef SPLIT_KEYBOARD
// encoder offsets for each hand
static uint8_t thisHand, thatHand;
// encoder counts for each hand
static uint8_t thatCount;
#endif
__attribute__((weak)) void encoder_quadrature_post_init_kb(void) {
extern void encoder_quadrature_handle_read(uint8_t index, uint8_t pin_a_state, uint8_t pin_b_state);
// Unused normally, but can be used for things like setting up pin-change interrupts in keyboard code.
// During the interrupt, read the pins then call `encoder_handle_read()` with the pin states and it'll queue up an encoder event if needed.
}
void encoder_quadrature_post_init(void) {
#ifdef ENCODER_DEFAULT_PIN_API_IMPL
for (uint8_t i = 0; i < thisCount; i++) {
encoder_quadrature_init_pin(i, false);
encoder_quadrature_init_pin(i, true);
}
encoder_wait_pullup_charge();
for (uint8_t i = 0; i < thisCount; i++) {
encoder_state[i] = (encoder_quadrature_read_pin(i, false) << 0) | (encoder_quadrature_read_pin(i, true) << 1);
}
#else
memset(encoder_state, 0, sizeof(encoder_state));
#endif
encoder_quadrature_post_init_kb();
}
void encoder_driver_init(void) {
#ifdef SPLIT_KEYBOARD
thisHand = isLeftHand ? 0 : NUM_ENCODERS_LEFT;
thatHand = NUM_ENCODERS_LEFT - thisHand;
thisCount = isLeftHand ? NUM_ENCODERS_LEFT : NUM_ENCODERS_RIGHT;
thatCount = isLeftHand ? NUM_ENCODERS_RIGHT : NUM_ENCODERS_LEFT;
#else // SPLIT_KEYBOARD
thisCount = NUM_ENCODERS;
#endif
#ifdef ENCODER_TESTS
// Annoying that we have to clear out values during initialisation here, but
// because all the arrays are static locals, rerunning tests in the same
// executable doesn't reset any of these. Kinda crappy having test-only code
// here, but it's the simplest solution.
memset(encoder_state, 0, sizeof(encoder_state));
memset(encoder_pulses, 0, sizeof(encoder_pulses));
const pin_t encoders_pad_a_left[] = ENCODERS_PAD_A;
const pin_t encoders_pad_b_left[] = ENCODERS_PAD_B;
for (uint8_t i = 0; i < thisCount; i++) {
encoders_pad_a[i] = encoders_pad_a_left[i];
encoders_pad_b[i] = encoders_pad_b_left[i];
}
#endif
#if defined(SPLIT_KEYBOARD) && defined(ENCODERS_PAD_A_RIGHT) && defined(ENCODERS_PAD_B_RIGHT)
// Re-initialise the pads if it's the right-hand side
if (!isLeftHand) {
const pin_t encoders_pad_a_right[] = ENCODERS_PAD_A_RIGHT;
const pin_t encoders_pad_b_right[] = ENCODERS_PAD_B_RIGHT;
for (uint8_t i = 0; i < thisCount; i++) {
encoders_pad_a[i] = encoders_pad_a_right[i];
encoders_pad_b[i] = encoders_pad_b_right[i];
}
}
#endif // defined(SPLIT_KEYBOARD) && defined(ENCODERS_PAD_A_RIGHT) && defined(ENCODERS_PAD_B_RIGHT)
// Encoder resolutions is defined differently in config.h, so concatenate
#if defined(SPLIT_KEYBOARD) && defined(ENCODER_RESOLUTIONS)
# if defined(ENCODER_RESOLUTIONS_RIGHT)
static const uint8_t encoder_resolutions_right[NUM_ENCODERS_RIGHT] = ENCODER_RESOLUTIONS_RIGHT;
# else // defined(ENCODER_RESOLUTIONS_RIGHT)
static const uint8_t encoder_resolutions_right[NUM_ENCODERS_RIGHT] = ENCODER_RESOLUTIONS;
# endif // defined(ENCODER_RESOLUTIONS_RIGHT)
for (uint8_t i = 0; i < NUM_ENCODERS_RIGHT; i++) {
encoder_resolutions[NUM_ENCODERS_LEFT + i] = encoder_resolutions_right[i];
}
#endif // defined(SPLIT_KEYBOARD) && defined(ENCODER_RESOLUTIONS)
encoder_quadrature_post_init();
}
static void encoder_handle_state_change(uint8_t index, uint8_t state) {
uint8_t i = index;
#ifdef SPLIT_KEYBOARD
index += thisHand;
#endif
#ifdef ENCODER_RESOLUTIONS
const uint8_t resolution = encoder_resolutions[index];
#else
const uint8_t resolution = ENCODER_RESOLUTION;
#endif
encoder_pulses[i] += encoder_LUT[state & 0xF];
#ifdef ENCODER_DEFAULT_POS
if ((encoder_pulses[i] >= resolution) || (encoder_pulses[i] <= -resolution) || ((state & 0x3) == ENCODER_DEFAULT_POS)) {
if (encoder_pulses[i] >= 1) {
#else
if (encoder_pulses[i] >= resolution) {
#endif
encoder_queue_event(index, ENCODER_COUNTER_CLOCKWISE);
}
#ifdef ENCODER_DEFAULT_POS
if (encoder_pulses[i] <= -1) {
#else
if (encoder_pulses[i] <= -resolution) { // direction is arbitrary here, but this clockwise
#endif
encoder_queue_event(index, ENCODER_CLOCKWISE);
}
encoder_pulses[i] %= resolution;
#ifdef ENCODER_DEFAULT_POS
encoder_pulses[i] = 0;
}
#endif
}
void encoder_quadrature_handle_read(uint8_t index, uint8_t pin_a_state, uint8_t pin_b_state) {
uint8_t state = pin_a_state | (pin_b_state << 1);
if ((encoder_state[index] & 0x3) != state) {
encoder_state[index] <<= 2;
encoder_state[index] |= state;
encoder_handle_state_change(index, encoder_state[index]);
}
}
__attribute__((weak)) void encoder_driver_task(void) {
for (uint8_t i = 0; i < thisCount; i++) {
encoder_quadrature_handle_read(i, encoder_quadrature_read_pin(i, false), encoder_quadrature_read_pin(i, true));
}
}

View file

@ -87,8 +87,10 @@ bool matrix_scan_custom(matrix_row_t current_matrix[]) {
bool changed = false;
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
changed |= read_cols_on_row(current_matrix, current_row);
#ifdef ENCODER_ENABLE
encoder_read();
// Need to frequently read the encoder pins while scanning because the I/O expander takes a long time in comparison.
encoder_driver_task();
#endif
}
return changed;

View file

@ -1,8 +0,0 @@
# if ENCODER_ENABLE is set, add defines but avoid adding encoder.c as it's replaced by custom code in rev2.c
ifeq ($(strip $(ENCODER_ENABLE)), yes)
ENCODER_ENABLE := no
OPT_DEFS += -DENCODER_ENABLE
ifeq ($(strip $(ENCODER_MAP_ENABLE)), yes)
OPT_DEFS += -DENCODER_MAP_ENABLE
endif
endif

View file

@ -2,99 +2,29 @@
// SPDX-License-Identifier: GPL-2.0-or-later
#include "rev2.h"
#include "gpio.h"
#ifdef ENCODER_ENABLE // code based on encoder.c
static const pin_t encoders_pad_a[] = ENCODERS_PAD_A;
static const pin_t encoders_pad_b[] = ENCODERS_PAD_B;
static int8_t encoder_LUT[] = {0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1, 0};
static uint8_t encoder_state = 3;
static int8_t encoder_pulses = 0;
static uint8_t encoder_value = 0;
typedef struct encoder_sync_data {
int value;
} encoder_sync_data;
#define ENCODER_PIN_A (((pin_t[])ENCODERS_PAD_A)[0])
#define ENCODER_PIN_B (((pin_t[])ENCODERS_PAD_B)[0])
// custom handler that returns encoder B pin status from slave side
void encoder_sync_slave_handler(uint8_t in_buflen, const void *in_data, uint8_t out_buflen, void *out_data) {
encoder_sync_data *data = (encoder_sync_data *)out_data;
data->value = readPin(encoders_pad_b[0]);
*(uint8_t *)out_data = readPin(ENCODER_PIN_B) ? 1 : 0;
}
__attribute__((weak)) bool encoder_update_user(uint8_t index, bool clockwise) {
return true;
}
void encoder_quadrature_init_pin(uint8_t index, bool pad_b) {}
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!encoder_update_user(index, clockwise)) return false;
tap_code(clockwise ? KC_VOLU : KC_VOLD);
return false;
}
#ifdef ENCODER_MAP_ENABLE
static void encoder_exec_mapping(uint8_t index, bool clockwise) {
action_exec(clockwise ? ENCODER_CW_EVENT(index, true) : ENCODER_CCW_EVENT(index, true));
wait_ms(ENCODER_MAP_KEY_DELAY);
action_exec(clockwise ? ENCODER_CW_EVENT(index, false) : ENCODER_CCW_EVENT(index, false));
wait_ms(ENCODER_MAP_KEY_DELAY);
}
#endif // ENCODER_MAP_ENABLE
void encoder_init(void) {
setPinInputHigh(encoders_pad_a[0]);
setPinInputHigh(encoders_pad_b[0]);
wait_us(100);
transaction_register_rpc(ENCODER_SYNC, encoder_sync_slave_handler);
}
bool encoder_read(void) {
// ignore if running on slave side
if (!is_keyboard_master()) return false;
bool changed = false;
encoder_sync_data data = {0};
// request pin B status from slave side
if (transaction_rpc_recv(ENCODER_SYNC, sizeof(data), &data)) {
uint8_t new_status = (readPin(encoders_pad_a[0]) << 0) | (data.value << 1);
if ((encoder_state & 0x3) != new_status) {
encoder_state <<= 2;
encoder_state |= new_status;
encoder_pulses += encoder_LUT[encoder_state & 0xF];
if (encoder_pulses >= ENCODER_RESOLUTION) {
encoder_value++;
changed = true;
#ifdef ENCODER_MAP_ENABLE
encoder_exec_mapping(0, false);
#else // ENCODER_MAP_ENABLE
encoder_update_kb(0, false);
#endif // ENCODER_MAP_ENABLE
uint8_t encoder_quadrature_read_pin(uint8_t index, bool pad_b) {
if(pad_b) {
uint8_t data = 0;
transaction_rpc_recv(ENCODER_SYNC, sizeof(data), &data);
return data;
}
if (encoder_pulses <= -ENCODER_RESOLUTION) {
encoder_value--;
changed = true;
#ifdef ENCODER_MAP_ENABLE
encoder_exec_mapping(0, true);
#else // ENCODER_MAP_ENABLE
encoder_update_kb(0, true);
#endif // ENCODER_MAP_ENABLE
}
encoder_pulses %= ENCODER_RESOLUTION;
}
}
return changed;
return readPin(ENCODER_PIN_A) ? 1 : 0;
}
// do not use standard split encoder transactions
void encoder_state_raw(uint8_t *slave_state) {}
void encoder_update_raw(uint8_t *slave_state) {}
#endif // ENCODER_ENABLE
#ifdef PICA40_RGBLIGHT_TIMEOUT
@ -125,6 +55,12 @@ bool should_set_rgblight = false;
void keyboard_post_init_kb(void) {
setPinOutput(PICA40_RGB_POWER_PIN);
#ifdef ENCODER_ENABLE
setPinInputHigh(ENCODER_PIN_A);
setPinInputHigh(ENCODER_PIN_B);
transaction_register_rpc(ENCODER_SYNC, encoder_sync_slave_handler);
#endif // ENCODER_ENABLE
#ifdef PICA40_RGBLIGHT_TIMEOUT
idle_timer = timer_read();
check_rgblight_timer = timer_read();

View file

@ -26,6 +26,13 @@
},
"encoder": {
"rotary": [
{"pin_a": "B12", "pin_b": "B13"},
{"pin_a": "B12", "pin_b": "B13"},
{"pin_a": "B12", "pin_b": "B13"},
{"pin_a": "B12", "pin_b": "B13"},
{"pin_a": "B12", "pin_b": "B13"},
{"pin_a": "B12", "pin_b": "B13"},
{"pin_a": "B12", "pin_b": "B13"},
{"pin_a": "B12", "pin_b": "B13"}
]
},

View file

@ -32,31 +32,16 @@
#define STM32_IWDG_RL_MS(s) STM32_IWDG_RL_US(s * 1000.0)
#define STM32_IWDG_RL_S(s) STM32_IWDG_RL_US(s * 1000000.0)
#if !defined(PLANCK_ENCODER_RESOLUTION)
# define PLANCK_ENCODER_RESOLUTION 4
#endif
#if !defined(PLANCK_WATCHDOG_TIMEOUT)
# define PLANCK_WATCHDOG_TIMEOUT 1.0
#endif
#ifdef ENCODER_MAP_ENABLE
#error "The encoder map feature is not currently supported by the Planck's encoder matrix"
#endif
/* matrix state(1:on, 0:off) */
static pin_t matrix_row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static pin_t matrix_col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
static matrix_row_t matrix_inverted[MATRIX_COLS];
#ifdef ENCODER_ENABLE
int8_t encoder_LUT[] = {0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1, 0};
uint8_t encoder_state[8] = {0};
int8_t encoder_pulses[8] = {0};
uint8_t encoder_value[8] = {0};
#endif
void matrix_init_custom(void) {
// actual matrix setup - cols
for (int i = 0; i < MATRIX_COLS; i++) {
@ -84,31 +69,6 @@ void matrix_init_custom(void) {
#endif
}
#ifdef ENCODER_ENABLE
bool encoder_update(uint8_t index, uint8_t state) {
bool changed = false;
uint8_t i = index;
encoder_pulses[i] += encoder_LUT[state & 0xF];
if (encoder_pulses[i] >= PLANCK_ENCODER_RESOLUTION) {
encoder_value[index]++;
changed = true;
encoder_update_kb(index, false);
}
if (encoder_pulses[i] <= -PLANCK_ENCODER_RESOLUTION) {
encoder_value[index]--;
changed = true;
encoder_update_kb(index, true);
}
encoder_pulses[i] %= PLANCK_ENCODER_RESOLUTION;
#ifdef ENCODER_DEFAULT_POS
encoder_pulses[i] = 0;
#endif
return changed;
}
#endif
bool matrix_scan_custom(matrix_row_t current_matrix[]) {
#ifndef PLANCK_WATCHDOG_DISABLE
// reset watchdog
@ -149,40 +109,16 @@ bool matrix_scan_custom(matrix_row_t current_matrix[]) {
changed |= old != current_matrix[row];
}
#ifdef ENCODER_ENABLE
// encoder-matrix functionality
// set up C/rows for encoder read
for (int i = 0; i < MATRIX_ROWS; i++) {
setPinOutput(matrix_row_pins[i]);
writePinHigh(matrix_row_pins[i]);
}
// set up A & B for reading
setPinInputHigh(B12);
setPinInputHigh(B13);
for (int i = 0; i < MATRIX_ROWS; i++) {
writePinLow(matrix_row_pins[i]);
wait_us(10);
uint8_t new_status = (palReadPad(GPIOB, 12) << 0) | (palReadPad(GPIOB, 13) << 1);
if ((encoder_state[i] & 0x3) != new_status) {
encoder_state[i] <<= 2;
encoder_state[i] |= new_status;
encoder_update(i, encoder_state[i]);
}
writePinHigh(matrix_row_pins[i]);
}
// revert A & B to matrix state
setPinInputLow(B12);
setPinInputLow(B13);
// revert C/rows to matrix state
for (int i = 0; i < MATRIX_ROWS; i++) {
setPinInputLow(matrix_row_pins[i]);
}
#endif
return changed;
}
uint8_t encoder_quadrature_read_pin(uint8_t index, bool pad_b) {
pin_t pin = pad_b ? B13: B12;
setPinInputHigh(pin);
writePinLow(matrix_row_pins[index]);
wait_us(10);
uint8_t ret = readPin(pin) ? 1 : 0;
setPinInputLow(matrix_row_pins[index]);
setPinInputLow(pin);
return ret;
}

View file

@ -32,3 +32,6 @@
/* PMW33XX Settings */
#define PMW33XX_CS_PIN B0
/* Custom encoder needs to specify just how many encoders we have */
#define NUM_ENCODERS 1

View file

@ -31,6 +31,12 @@
["D4", "D2", "E6", "B6", "D7", "C6", "C7", "B7"]
]
},
"features": {
"encoder": true
},
"encoder": {
"driver": "custom"
},
"layouts": {
"LAYOUT": {
"layout": [

View file

@ -66,8 +66,6 @@ uint8_t OptLowPin = OPT_ENC1;
bool debug_encoder = false;
bool is_drag_scroll = false;
__attribute__((weak)) bool encoder_update_user(uint8_t index, bool clockwise) { return true; }
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!encoder_update_user(index, clockwise)) {
return false;
@ -83,7 +81,14 @@ bool encoder_update_kb(uint8_t index, bool clockwise) {
return true;
}
void process_wheel(void) {
void encoder_driver_init(void) {
setPinInput(OPT_ENC1);
setPinInput(OPT_ENC2);
opt_encoder_init();
}
void encoder_driver_task(void) {
// Lovingly ripped from the Ploopy Source
// If the mouse wheel was just released, do not scroll.
@ -111,12 +116,10 @@ void process_wheel(void) {
int dir = opt_encoder_handler(p1, p2);
if (dir == 0) return;
encoder_update_kb(0, dir > 0);
encoder_queue_event(0, dir == 1);
}
report_mouse_t pointing_device_task_kb(report_mouse_t mouse_report) {
process_wheel();
if (is_drag_scroll) {
mouse_report.h = mouse_report.x;
#ifdef PLOOPY_DRAGSCROLL_INVERT
@ -177,9 +180,6 @@ void keyboard_pre_init_kb(void) {
// debug_mouse = true;
// debug_encoder = true;
setPinInput(OPT_ENC1);
setPinInput(OPT_ENC2);
/* Ground all output pins connected to ground. This provides additional
* pathways to ground. If you're messing with this, know this: driving ANY
* of these pins high will cause a short. On the MCU. Ka-blooey.
@ -204,8 +204,6 @@ void keyboard_pre_init_kb(void) {
void pointing_device_init_kb(void) {
pointing_device_set_cpi(dpi_array[keyboard_config.dpi_config]);
// initialize the scroll wheel's optical encoder
opt_encoder_init();
}
void eeconfig_init_kb(void) {

View file

@ -16,9 +16,6 @@ POINTING_DEVICE_ENABLE = yes
POINTING_DEVICE_DRIVER = pmw3360
MOUSEKEY_ENABLE = yes # Mouse keys
ENCODER_ENABLE := no
OPTS_DEF += -DENCODER_ENABLE
ANALOG_DRIVER_REQUIRED = yes
SRC += opt_encoder.c

View file

@ -31,3 +31,6 @@
/* PMW33XX Settings */
#define PMW33XX_CS_PIN B0
#define POINTING_DEVICE_INVERT_Y
/* Custom encoder needs to specify just how many encoders we have */
#define NUM_ENCODERS 1

View file

@ -12,6 +12,12 @@
"bootmagic": {
"matrix": [0, 3]
},
"features": {
"encoder": true
},
"encoder": {
"driver": "custom"
},
"layouts": {
"LAYOUT": {
"layout": [

View file

@ -16,9 +16,6 @@ POINTING_DEVICE_ENABLE = yes
POINTING_DEVICE_DRIVER = pmw3360
MOUSEKEY_ENABLE = yes # Mouse keys
ENCODER_ENABLE := no
OPTS_DEF += -DENCODER_ENABLE
ANALOG_DRIVER_REQUIRED = yes
SRC += opt_encoder.c

View file

@ -66,8 +66,6 @@ uint8_t OptLowPin = OPT_ENC1;
bool debug_encoder = false;
bool is_drag_scroll = false;
__attribute__((weak)) bool encoder_update_user(uint8_t index, bool clockwise) { return true; }
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!encoder_update_user(index, clockwise)) {
return false;
@ -83,7 +81,15 @@ bool encoder_update_kb(uint8_t index, bool clockwise) {
return true;
}
void process_wheel(void) {
void encoder_driver_init(void) {
setPinInput(OPT_ENC1);
setPinInput(OPT_ENC2);
opt_encoder_init();
}
void encoder_driver_task(void) {
// TODO: Replace this with interrupt driven code, polling is S L O W
// Lovingly ripped from the Ploopy Source
@ -112,11 +118,10 @@ void process_wheel(void) {
int dir = opt_encoder_handler(p1, p2);
if (dir == 0) return;
encoder_update_kb(0, dir > 0);
encoder_queue_event(0, dir == 1);
}
report_mouse_t pointing_device_task_kb(report_mouse_t mouse_report) {
process_wheel();
if (is_drag_scroll) {
#ifdef PLOOPY_DRAGSCROLL_H_INVERT
@ -189,9 +194,6 @@ void keyboard_pre_init_kb(void) {
// debug_mouse = true;
// debug_encoder = true;
setPinInput(OPT_ENC1);
setPinInput(OPT_ENC2);
/* Ground all output pins connected to ground. This provides additional
* pathways to ground. If you're messing with this, know this: driving ANY
* of these pins high will cause a short. On the MCU. Ka-blooey.
@ -216,8 +218,6 @@ void keyboard_pre_init_kb(void) {
void pointing_device_init_kb(void) {
pointing_device_set_cpi(dpi_array[keyboard_config.dpi_config]);
// initialize the scroll wheel's optical encoder
opt_encoder_init();
}
void eeconfig_init_kb(void) {

View file

@ -32,3 +32,6 @@
#define ADNS5050_CS_PIN B4
#define POINTING_DEVICE_ROTATION_270
/* Custom encoder needs to specify just how many encoders we have */
#define NUM_ENCODERS 1

View file

@ -14,6 +14,12 @@
},
"processor": "atmega32u4",
"bootloader": "atmel-dfu",
"features": {
"encoder": true
},
"encoder": {
"driver": "custom"
},
"layouts": {
"LAYOUT": {
"layout": [

View file

@ -13,9 +13,6 @@ POINTING_DEVICE_ENABLE = yes
POINTING_DEVICE_DRIVER = adns5050
MOUSEKEY_ENABLE = yes # Mouse keys
ENCODER_ENABLE := no
OPTS_DEF += -DENCODER_ENABLE
ANALOG_DRIVER_REQUIRED = yes
SRC += opt_encoder.c

View file

@ -74,8 +74,6 @@ uint8_t OptLowPin = OPT_ENC1;
bool debug_encoder = false;
bool is_drag_scroll = false;
__attribute__((weak)) bool encoder_update_user(uint8_t index, bool clockwise) { return true; }
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!encoder_update_user(index, clockwise)) {
return false;
@ -91,7 +89,14 @@ bool encoder_update_kb(uint8_t index, bool clockwise) {
return true;
}
void process_wheel(void) {
void encoder_driver_init(void) {
setPinInput(OPT_ENC1);
setPinInput(OPT_ENC2);
opt_encoder_init();
}
void encoder_driver_task(void) {
uint16_t p1 = adc_read(OPT_ENC1_MUX);
uint16_t p2 = adc_read(OPT_ENC2_MUX);
@ -113,21 +118,17 @@ void process_wheel(void) {
}
if (dir == 0) return;
encoder_update_kb(0, dir > 0);
encoder_queue_event(0, dir == 1);
lastScroll = timer_read();
}
void pointing_device_init_kb(void) {
opt_encoder_init();
// set the DPI.
pointing_device_set_cpi(dpi_array[keyboard_config.dpi_config]);
}
report_mouse_t pointing_device_task_kb(report_mouse_t mouse_report) {
process_wheel();
if (is_drag_scroll) {
mouse_report.h = mouse_report.x;
#ifdef PLOOPY_DRAGSCROLL_INVERT
@ -180,9 +181,6 @@ void keyboard_pre_init_kb(void) {
// debug_mouse = true;
// debug_encoder = true;
setPinInput(OPT_ENC1);
setPinInput(OPT_ENC2);
/* Ground all output pins connected to ground. This provides additional
* pathways to ground. If you're messing with this, know this: driving ANY
* of these pins high will cause a short. On the MCU. Ka-blooey.

View file

@ -31,3 +31,6 @@
/* PMW3360 Settings */
#define POINTING_DEVICE_CS_PIN B0
/* Custom encoder needs to specify just how many encoders we have */
#define NUM_ENCODERS 1

View file

@ -18,7 +18,10 @@
"mousekey": true,
"nkro": true,
"pointing_device": true,
"encoder": false
"encoder": true
},
"encoder": {
"driver": "custom"
},
"layouts": {
"LAYOUT": {

View file

@ -1,4 +0,0 @@
# Force encoder to be disabled
# But enable the defines for it
ENCODER_ENABLE := no
OPT_DEFS += -DENCODER_ENABLE

View file

@ -17,6 +17,7 @@
*/
#include "trackball_thumb.h"
#include "encoder.h"
#ifndef OPT_DEBOUNCE
# define OPT_DEBOUNCE 5 // (ms) Time between scroll events
@ -57,9 +58,6 @@ uint16_t last_mid_click = 0; // Stops scrollwheel from being read if it was
bool debug_encoder = false;
bool is_drag_scroll = false;
// require, since core encoder.c (where is is normally defined isn't present
__attribute__((weak)) bool encoder_update_user(uint8_t index, bool clockwise) { return true; }
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!encoder_update_user(index, clockwise)) {
return false;
@ -75,25 +73,25 @@ bool encoder_update_kb(uint8_t index, bool clockwise) {
return true;
}
void encoder_init(void) { opt_encoder_init(); }
void encoder_driver_init(void) { opt_encoder_init(); }
bool encoder_read(void) {
void encoder_driver_task(void) {
// Lovingly ripped from the Ploopy Source
// If the mouse wheel was just released, do not scroll.
if (timer_elapsed(last_mid_click) < SCROLL_BUTT_DEBOUNCE) {
return false;
return;
}
// Limit the number of scrolls per unit time.
if (timer_elapsed(last_scroll) < OPT_DEBOUNCE) {
return false;
return;
}
// Don't scroll if the middle button is depressed.
if (is_scroll_clicked) {
#ifndef IGNORE_SCROLL_CLICK
return false;
return;
#endif
}
@ -104,10 +102,8 @@ bool encoder_read(void) {
int dir = opt_encoder_handler(p1, p2);
if (dir == 0) return false;
;
encoder_update_kb(0, dir == 1);
return true;
if (dir == 0) return;
encoder_queue_event(0, dir == 1);
}
report_mouse_t pointing_device_task_kb(report_mouse_t mouse_report) {

View file

@ -28,9 +28,6 @@
#define OPT_ENC1_MUX 4
#define OPT_ENC2_MUX 0
bool encoder_update_kb(uint8_t index, bool clockwise);
bool encoder_update_user(uint8_t index, bool clockwise);
typedef union {
uint32_t raw;
struct {

View file

@ -1,82 +1,111 @@
/*
* Copyright 2018 Jack Humbert <jack.humb@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#include "encoder.h"
#include "keyboard.h"
#include <string.h>
#include "action.h"
#include "keycodes.h"
#include "encoder.h"
#include "wait.h"
#ifdef SPLIT_KEYBOARD
# include "split_util.h"
#endif
// for memcpy
#include <string.h>
#ifndef ENCODER_MAP_KEY_DELAY
# include "action.h"
# define ENCODER_MAP_KEY_DELAY TAP_CODE_DELAY
#endif
#if !defined(ENCODER_RESOLUTIONS) && !defined(ENCODER_RESOLUTION)
# define ENCODER_RESOLUTION 4
#endif
#if !defined(ENCODERS_PAD_A) || !defined(ENCODERS_PAD_B)
# error "No encoder pads defined by ENCODERS_PAD_A and ENCODERS_PAD_B"
#endif
extern volatile bool isLeftHand;
static pin_t encoders_pad_a[NUM_ENCODERS_MAX_PER_SIDE] = ENCODERS_PAD_A;
static pin_t encoders_pad_b[NUM_ENCODERS_MAX_PER_SIDE] = ENCODERS_PAD_B;
#ifdef ENCODER_RESOLUTIONS
static uint8_t encoder_resolutions[NUM_ENCODERS] = ENCODER_RESOLUTIONS;
#endif
#ifndef ENCODER_DIRECTION_FLIP
# define ENCODER_CLOCKWISE true
# define ENCODER_COUNTER_CLOCKWISE false
#else
# define ENCODER_CLOCKWISE false
# define ENCODER_COUNTER_CLOCKWISE true
#endif
static int8_t encoder_LUT[] = {0, -1, 1, 0, 1, 0, 0, -1, -1, 0, 0, 1, 0, 1, -1, 0};
static uint8_t encoder_state[NUM_ENCODERS] = {0};
static int8_t encoder_pulses[NUM_ENCODERS] = {0};
// encoder counts
static uint8_t thisCount;
#ifdef SPLIT_KEYBOARD
// encoder offsets for each hand
static uint8_t thisHand, thatHand;
// encoder counts for each hand
static uint8_t thatCount;
#endif
static uint8_t encoder_value[NUM_ENCODERS] = {0};
__attribute__((weak)) void encoder_wait_pullup_charge(void) {
wait_us(100);
__attribute__((weak)) bool should_process_encoder(void) {
return is_keyboard_master();
}
static encoder_events_t encoder_events;
void encoder_init(void) {
memset(&encoder_events, 0, sizeof(encoder_events));
encoder_driver_init();
}
static bool encoder_handle_queue(void) {
bool changed = false;
while (encoder_events.tail != encoder_events.head) {
encoder_event_t event = encoder_events.queue[encoder_events.tail];
encoder_events.tail = (encoder_events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
#ifdef ENCODER_MAP_ENABLE
// The delays below cater for Windows and its wonderful requirements.
action_exec(event.clockwise ? MAKE_ENCODER_CW_EVENT(event.index, true) : MAKE_ENCODER_CCW_EVENT(event.index, true));
# if ENCODER_MAP_KEY_DELAY > 0
wait_ms(ENCODER_MAP_KEY_DELAY);
# endif // ENCODER_MAP_KEY_DELAY > 0
action_exec(event.clockwise ? MAKE_ENCODER_CW_EVENT(event.index, false) : MAKE_ENCODER_CCW_EVENT(event.index, false));
# if ENCODER_MAP_KEY_DELAY > 0
wait_ms(ENCODER_MAP_KEY_DELAY);
# endif // ENCODER_MAP_KEY_DELAY > 0
#else // ENCODER_MAP_ENABLE
encoder_update_kb(event.index, event.clockwise ? true : false);
#endif // ENCODER_MAP_ENABLE
changed = true;
}
return changed;
}
bool encoder_task(void) {
bool changed = false;
#ifdef SPLIT_KEYBOARD
// Attempt to process existing encoder events in case split handling has already enqueued events
if (should_process_encoder()) {
changed |= encoder_handle_queue();
}
#endif // SPLIT_KEYBOARD
// Let the encoder driver produce events
encoder_driver_task();
// Process any events that were enqueued
if (should_process_encoder()) {
changed |= encoder_handle_queue();
}
return changed;
}
bool encoder_queue_event(uint8_t index, bool clockwise) {
// Drop out if we're full
if ((encoder_events.head + 1) % MAX_QUEUED_ENCODER_EVENTS == encoder_events.tail) {
return false;
}
// Append the event
encoder_event_t new_event = {.index = index, .clockwise = clockwise ? 1 : 0};
encoder_events.queue[encoder_events.head] = new_event;
// Increment the head index
encoder_events.head = (encoder_events.head + 1) % MAX_QUEUED_ENCODER_EVENTS;
return true;
}
void encoder_retrieve_events(encoder_events_t *events) {
memcpy(events, &encoder_events, sizeof(encoder_events));
}
#ifdef SPLIT_KEYBOARD
void encoder_set_tail_index(uint8_t tail_index) {
encoder_events.tail = tail_index;
}
void encoder_handle_slave_events(encoder_events_t *events) {
while (events->tail != events->head) {
encoder_event_t event = events->queue[events->tail];
events->tail = (events->tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
encoder_queue_event(event.index, event.clockwise ? true : false);
}
}
#endif // SPLIT_KEYBOARD
__attribute__((weak)) bool encoder_update_user(uint8_t index, bool clockwise) {
return true;
}
@ -106,192 +135,3 @@ __attribute__((weak)) bool encoder_update_kb(uint8_t index, bool clockwise) {
#endif // ENCODER_TESTS
return res;
}
__attribute__((weak)) bool should_process_encoder(void) {
return is_keyboard_master();
}
void encoder_init(void) {
#ifdef SPLIT_KEYBOARD
thisHand = isLeftHand ? 0 : NUM_ENCODERS_LEFT;
thatHand = NUM_ENCODERS_LEFT - thisHand;
thisCount = isLeftHand ? NUM_ENCODERS_LEFT : NUM_ENCODERS_RIGHT;
thatCount = isLeftHand ? NUM_ENCODERS_RIGHT : NUM_ENCODERS_LEFT;
#else // SPLIT_KEYBOARD
thisCount = NUM_ENCODERS;
#endif
#ifdef ENCODER_TESTS
// Annoying that we have to clear out values during initialisation here, but
// because all the arrays are static locals, rerunning tests in the same
// executable doesn't reset any of these. Kinda crappy having test-only code
// here, but it's the simplest solution.
memset(encoder_value, 0, sizeof(encoder_value));
memset(encoder_state, 0, sizeof(encoder_state));
memset(encoder_pulses, 0, sizeof(encoder_pulses));
static const pin_t encoders_pad_a_left[] = ENCODERS_PAD_A;
static const pin_t encoders_pad_b_left[] = ENCODERS_PAD_B;
for (uint8_t i = 0; i < thisCount; i++) {
encoders_pad_a[i] = encoders_pad_a_left[i];
encoders_pad_b[i] = encoders_pad_b_left[i];
}
#endif
#if defined(SPLIT_KEYBOARD) && defined(ENCODERS_PAD_A_RIGHT) && defined(ENCODERS_PAD_B_RIGHT)
// Re-initialise the pads if it's the right-hand side
if (!isLeftHand) {
static const pin_t encoders_pad_a_right[] = ENCODERS_PAD_A_RIGHT;
static const pin_t encoders_pad_b_right[] = ENCODERS_PAD_B_RIGHT;
for (uint8_t i = 0; i < thisCount; i++) {
encoders_pad_a[i] = encoders_pad_a_right[i];
encoders_pad_b[i] = encoders_pad_b_right[i];
}
}
#endif // defined(SPLIT_KEYBOARD) && defined(ENCODERS_PAD_A_RIGHT) && defined(ENCODERS_PAD_B_RIGHT)
// Encoder resolutions is handled purely master-side, so concatenate the two arrays
#if defined(SPLIT_KEYBOARD) && defined(ENCODER_RESOLUTIONS)
# if defined(ENCODER_RESOLUTIONS_RIGHT)
static const uint8_t encoder_resolutions_right[NUM_ENCODERS_RIGHT] = ENCODER_RESOLUTIONS_RIGHT;
# else // defined(ENCODER_RESOLUTIONS_RIGHT)
static const uint8_t encoder_resolutions_right[NUM_ENCODERS_RIGHT] = ENCODER_RESOLUTIONS;
# endif // defined(ENCODER_RESOLUTIONS_RIGHT)
for (uint8_t i = 0; i < NUM_ENCODERS_RIGHT; i++) {
encoder_resolutions[NUM_ENCODERS_LEFT + i] = encoder_resolutions_right[i];
}
#endif // defined(SPLIT_KEYBOARD) && defined(ENCODER_RESOLUTIONS)
for (uint8_t i = 0; i < thisCount; i++) {
gpio_set_pin_input_high(encoders_pad_a[i]);
gpio_set_pin_input_high(encoders_pad_b[i]);
}
encoder_wait_pullup_charge();
for (uint8_t i = 0; i < thisCount; i++) {
encoder_state[i] = (gpio_read_pin(encoders_pad_a[i]) << 0) | (gpio_read_pin(encoders_pad_b[i]) << 1);
}
}
#ifdef ENCODER_MAP_ENABLE
static void encoder_exec_mapping(uint8_t index, bool clockwise) {
// The delays below cater for Windows and its wonderful requirements.
action_exec(clockwise ? MAKE_ENCODER_CW_EVENT(index, true) : MAKE_ENCODER_CCW_EVENT(index, true));
# if ENCODER_MAP_KEY_DELAY > 0
wait_ms(ENCODER_MAP_KEY_DELAY);
# endif // ENCODER_MAP_KEY_DELAY > 0
action_exec(clockwise ? MAKE_ENCODER_CW_EVENT(index, false) : MAKE_ENCODER_CCW_EVENT(index, false));
# if ENCODER_MAP_KEY_DELAY > 0
wait_ms(ENCODER_MAP_KEY_DELAY);
# endif // ENCODER_MAP_KEY_DELAY > 0
}
#endif // ENCODER_MAP_ENABLE
static bool encoder_update(uint8_t index, uint8_t state) {
bool changed = false;
uint8_t i = index;
#ifdef ENCODER_RESOLUTIONS
const uint8_t resolution = encoder_resolutions[i];
#else
const uint8_t resolution = ENCODER_RESOLUTION;
#endif
#ifdef SPLIT_KEYBOARD
index += thisHand;
#endif
encoder_pulses[i] += encoder_LUT[state & 0xF];
#ifdef ENCODER_DEFAULT_POS
if ((encoder_pulses[i] >= resolution) || (encoder_pulses[i] <= -resolution) || ((state & 0x3) == ENCODER_DEFAULT_POS)) {
if (encoder_pulses[i] >= 1) {
#else
if (encoder_pulses[i] >= resolution) {
#endif
encoder_value[index]++;
changed = true;
#ifdef SPLIT_KEYBOARD
if (should_process_encoder())
#endif // SPLIT_KEYBOARD
#ifdef ENCODER_MAP_ENABLE
encoder_exec_mapping(index, ENCODER_COUNTER_CLOCKWISE);
#else // ENCODER_MAP_ENABLE
encoder_update_kb(index, ENCODER_COUNTER_CLOCKWISE);
#endif // ENCODER_MAP_ENABLE
}
#ifdef ENCODER_DEFAULT_POS
if (encoder_pulses[i] <= -1) {
#else
if (encoder_pulses[i] <= -resolution) { // direction is arbitrary here, but this clockwise
#endif
encoder_value[index]--;
changed = true;
#ifdef SPLIT_KEYBOARD
if (should_process_encoder())
#endif // SPLIT_KEYBOARD
#ifdef ENCODER_MAP_ENABLE
encoder_exec_mapping(index, ENCODER_CLOCKWISE);
#else // ENCODER_MAP_ENABLE
encoder_update_kb(index, ENCODER_CLOCKWISE);
#endif // ENCODER_MAP_ENABLE
}
encoder_pulses[i] %= resolution;
#ifdef ENCODER_DEFAULT_POS
encoder_pulses[i] = 0;
}
#endif
return changed;
}
bool encoder_read(void) {
bool changed = false;
for (uint8_t i = 0; i < thisCount; i++) {
uint8_t new_status = (gpio_read_pin(encoders_pad_a[i]) << 0) | (gpio_read_pin(encoders_pad_b[i]) << 1);
if ((encoder_state[i] & 0x3) != new_status) {
encoder_state[i] <<= 2;
encoder_state[i] |= new_status;
changed |= encoder_update(i, encoder_state[i]);
}
}
return changed;
}
#ifdef SPLIT_KEYBOARD
void last_encoder_activity_trigger(void);
void encoder_state_raw(uint8_t *slave_state) {
memcpy(slave_state, &encoder_value[thisHand], sizeof(uint8_t) * thisCount);
}
void encoder_update_raw(uint8_t *slave_state) {
bool changed = false;
for (uint8_t i = 0; i < thatCount; i++) { // Note inverted logic -- we want the opposite side
const uint8_t index = i + thatHand;
int8_t delta = slave_state[i] - encoder_value[index];
while (delta > 0) {
delta--;
encoder_value[index]++;
changed = true;
# ifdef ENCODER_MAP_ENABLE
encoder_exec_mapping(index, ENCODER_COUNTER_CLOCKWISE);
# else // ENCODER_MAP_ENABLE
encoder_update_kb(index, ENCODER_COUNTER_CLOCKWISE);
# endif // ENCODER_MAP_ENABLE
}
while (delta < 0) {
delta++;
encoder_value[index]--;
changed = true;
# ifdef ENCODER_MAP_ENABLE
encoder_exec_mapping(index, ENCODER_CLOCKWISE);
# else // ENCODER_MAP_ENABLE
encoder_update_kb(index, ENCODER_CLOCKWISE);
# endif // ENCODER_MAP_ENABLE
}
}
// Update the last encoder input time -- handled external to encoder_read() when we're running a split
if (changed) last_encoder_activity_trigger();
}
#endif

View file

@ -22,45 +22,88 @@
#include "gpio.h"
#include "util.h"
#ifdef ENCODER_ENABLE
__attribute__((weak)) bool should_process_encoder(void);
void encoder_init(void);
bool encoder_read(void);
bool encoder_task(void);
bool encoder_queue_event(uint8_t index, bool clockwise);
bool encoder_update_kb(uint8_t index, bool clockwise);
bool encoder_update_user(uint8_t index, bool clockwise);
#ifdef SPLIT_KEYBOARD
void encoder_state_raw(uint8_t* slave_state);
void encoder_update_raw(uint8_t* slave_state);
# ifdef SPLIT_KEYBOARD
# if defined(ENCODERS_PAD_A_RIGHT)
# ifndef NUM_ENCODERS_LEFT
# define NUM_ENCODERS_LEFT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
# endif
# ifndef NUM_ENCODERS_RIGHT
# define NUM_ENCODERS_RIGHT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A_RIGHT))
# endif
# else
# ifndef NUM_ENCODERS_LEFT
# define NUM_ENCODERS_LEFT ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
# endif
# ifndef NUM_ENCODERS_RIGHT
# define NUM_ENCODERS_RIGHT NUM_ENCODERS_LEFT
# endif
# endif
# ifndef NUM_ENCODERS
# define NUM_ENCODERS (NUM_ENCODERS_LEFT + NUM_ENCODERS_RIGHT)
# endif
#else // SPLIT_KEYBOARD
# else // SPLIT_KEYBOARD
# ifndef NUM_ENCODERS
# define NUM_ENCODERS ARRAY_SIZE(((pin_t[])ENCODERS_PAD_A))
# endif
# define NUM_ENCODERS_LEFT NUM_ENCODERS
# define NUM_ENCODERS_RIGHT 0
#endif // SPLIT_KEYBOARD
# endif // SPLIT_KEYBOARD
#ifndef NUM_ENCODERS
# ifndef NUM_ENCODERS
# define NUM_ENCODERS 0
# define NUM_ENCODERS_LEFT 0
# define NUM_ENCODERS_RIGHT 0
#endif // NUM_ENCODERS
# endif // NUM_ENCODERS
#define NUM_ENCODERS_MAX_PER_SIDE MAX(NUM_ENCODERS_LEFT, NUM_ENCODERS_RIGHT)
# define NUM_ENCODERS_MAX_PER_SIDE MAX(NUM_ENCODERS_LEFT, NUM_ENCODERS_RIGHT)
#ifdef ENCODER_MAP_ENABLE
# ifndef MAX_QUEUED_ENCODER_EVENTS
# define MAX_QUEUED_ENCODER_EVENTS MAX(4, ((NUM_ENCODERS_MAX_PER_SIDE) + 1))
# endif // MAX_QUEUED_ENCODER_EVENTS
typedef struct encoder_event_t {
uint8_t index : 7;
uint8_t clockwise : 1;
} encoder_event_t;
typedef struct encoder_events_t {
uint8_t head;
uint8_t tail;
encoder_event_t queue[MAX_QUEUED_ENCODER_EVENTS];
} encoder_events_t;
// Get the current queued events
void encoder_retrieve_events(encoder_events_t *events);
# ifdef SPLIT_KEYBOARD
void encoder_set_tail_index(uint8_t tail_index);
void encoder_handle_slave_events(encoder_events_t *events);
# endif // SPLIT_KEYBOARD
# ifdef ENCODER_MAP_ENABLE
# define NUM_DIRECTIONS 2
# define ENCODER_CCW_CW(ccw, cw) \
{ (cw), (ccw) }
extern const uint16_t encoder_map[][NUM_ENCODERS][NUM_DIRECTIONS];
#endif // ENCODER_MAP_ENABLE
# endif // ENCODER_MAP_ENABLE
// "Custom encoder lite" support
void encoder_driver_init(void);
void encoder_driver_task(void);
#endif // ENCODER_ENABLE

View file

@ -0,0 +1,6 @@
// Copyright 2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
// Override the one in quantum/util because it doesn't like working on x64 builds.
#define ARRAY_SIZE(array) (sizeof((array)) / sizeof((array)[0]))

View file

@ -1,6 +1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"
#define MATRIX_ROWS 1
#define MATRIX_COLS 1

View file

@ -1,6 +1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"
#define MATRIX_ROWS 1
#define MATRIX_COLS 1

View file

@ -1,6 +1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"
#define MATRIX_ROWS 1
#define MATRIX_COLS 1

View file

@ -1,6 +1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"
#define MATRIX_ROWS 1
#define MATRIX_COLS 1

View file

@ -1,6 +1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"
#define MATRIX_ROWS 1
#define MATRIX_COLS 1

View file

@ -1,6 +1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"
#define MATRIX_ROWS 1
#define MATRIX_COLS 1

View file

@ -1,6 +1,7 @@
// Copyright 2022 Nick Brassel (@tzarc)
// Copyright 2022-2023 Nick Brassel (@tzarc)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include "config_encoder_common.h"
#define MATRIX_ROWS 1
#define MATRIX_COLS 1

View file

@ -41,7 +41,7 @@ bool encoder_update_kb(uint8_t index, bool clockwise) {
bool setAndRead(pin_t pin, bool val) {
setPin(pin, val);
return encoder_read();
return encoder_task();
}
class EncoderTest : public ::testing::Test {};

View file

@ -33,22 +33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update updates[32];
bool isMaster;
bool isLeftHand;
extern "C" {
bool is_keyboard_master(void) {
return isMaster;
}
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!isLeftHand) {
if (!is_keyboard_master()) {
// this method has no effect on slave half
printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
return true;
}
updates[updates_array_idx % 32] = {index, clockwise};
updates_array_idx++;
return true;
}
};
bool setAndRead(pin_t pin, bool val) {
setPin(pin, val);
return encoder_read();
return encoder_task();
}
class EncoderSplitTestLeftEqRight : public ::testing::Test {
@ -63,6 +70,7 @@ class EncoderSplitTestLeftEqRight : public ::testing::Test {
};
TEST_F(EncoderSplitTestLeftEqRight, TestInitLeft) {
isMaster = true;
isLeftHand = true;
encoder_init();
EXPECT_EQ(pinIsInputHigh[0], true);
@ -77,6 +85,7 @@ TEST_F(EncoderSplitTestLeftEqRight, TestInitLeft) {
}
TEST_F(EncoderSplitTestLeftEqRight, TestInitRight) {
isMaster = true;
isLeftHand = false;
encoder_init();
EXPECT_EQ(pinIsInputHigh[0], false);
@ -90,7 +99,8 @@ TEST_F(EncoderSplitTestLeftEqRight, TestInitRight) {
EXPECT_EQ(updates_array_idx, 0); // no updates received
}
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseLeft) {
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseLeftMaster) {
isMaster = true;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
@ -102,9 +112,19 @@ TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseLeft) {
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 0);
EXPECT_EQ(updates[0].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseRightSent) {
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseRightMaster) {
isMaster = true;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
@ -113,23 +133,60 @@ TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseRightSent) {
setAndRead(6, true);
setAndRead(7, true);
uint8_t slave_state[32] = {0};
encoder_state_raw(slave_state);
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 3);
EXPECT_EQ(updates[0].clockwise, true);
EXPECT_EQ(slave_state[0], 0);
EXPECT_EQ(slave_state[1], 0xFF);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestLeftEqRight, TestMultipleEncodersRightReceived) {
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseLeftSlave) {
isMaster = false;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(0, false);
setAndRead(1, false);
setAndRead(0, true);
setAndRead(1, true);
uint8_t slave_state[32] = {1, 0xFF}; // First right encoder is CCW, Second right encoder CW
encoder_update_raw(slave_state);
EXPECT_EQ(updates_array_idx, 0); // no updates received
EXPECT_EQ(updates_array_idx, 2); // two updates received, one for each changed item on the right side
EXPECT_EQ(updates[0].index, 2);
EXPECT_EQ(updates[0].clockwise, false);
EXPECT_EQ(updates[1].index, 3);
EXPECT_EQ(updates[1].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}
TEST_F(EncoderSplitTestLeftEqRight, TestOneClockwiseRightSlave) {
isMaster = false;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(6, false);
setAndRead(7, false);
setAndRead(6, true);
setAndRead(7, true);
EXPECT_EQ(updates_array_idx, 0); // no updates received
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

View file

@ -33,22 +33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update updates[32];
bool isMaster;
bool isLeftHand;
extern "C" {
bool is_keyboard_master(void) {
return isMaster;
}
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!isLeftHand) {
if (!is_keyboard_master()) {
// this method has no effect on slave half
printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
return true;
}
updates[updates_array_idx % 32] = {index, clockwise};
updates_array_idx++;
return true;
}
};
bool setAndRead(pin_t pin, bool val) {
setPin(pin, val);
return encoder_read();
return encoder_task();
}
class EncoderSplitTestLeftGreaterThanRight : public ::testing::Test {
@ -94,7 +101,8 @@ TEST_F(EncoderSplitTestLeftGreaterThanRight, TestInitRight) {
EXPECT_EQ(updates_array_idx, 0); // no updates received
}
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseLeft) {
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseLeftMaster) {
isMaster = true;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
@ -106,9 +114,19 @@ TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseLeft) {
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 0);
EXPECT_EQ(updates[0].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseRightSent) {
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseRightMaster) {
isMaster = true;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
@ -117,23 +135,60 @@ TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseRightSent) {
setAndRead(6, true);
setAndRead(7, true);
uint8_t slave_state[32] = {0};
encoder_state_raw(slave_state);
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 3);
EXPECT_EQ(updates[0].clockwise, true);
EXPECT_EQ(slave_state[0], 0xFF);
EXPECT_EQ(slave_state[1], 0);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestMultipleEncodersRightReceived) {
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseLeftSlave) {
isMaster = false;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(0, false);
setAndRead(1, false);
setAndRead(0, true);
setAndRead(1, true);
uint8_t slave_state[32] = {1, 0xFF}; // First right encoder is CCW, Second right encoder no change, third right encoder CW
encoder_update_raw(slave_state);
EXPECT_EQ(updates_array_idx, 0); // no updates received
EXPECT_EQ(updates_array_idx, 2); // two updates received, one for each changed item on the right side
EXPECT_EQ(updates[0].index, 3);
EXPECT_EQ(updates[0].clockwise, false);
EXPECT_EQ(updates[1].index, 4);
EXPECT_EQ(updates[1].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}
TEST_F(EncoderSplitTestLeftGreaterThanRight, TestOneClockwiseRightSlave) {
isMaster = false;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(6, false);
setAndRead(7, false);
setAndRead(6, true);
setAndRead(7, true);
EXPECT_EQ(updates_array_idx, 0); // no updates received
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

View file

@ -33,22 +33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update updates[32];
bool isMaster;
bool isLeftHand;
extern "C" {
bool is_keyboard_master(void) {
return isMaster;
}
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!isLeftHand) {
if (!is_keyboard_master()) {
// this method has no effect on slave half
printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
return true;
}
updates[updates_array_idx % 32] = {index, clockwise};
updates_array_idx++;
return true;
}
};
bool setAndRead(pin_t pin, bool val) {
setPin(pin, val);
return encoder_read();
return encoder_task();
}
class EncoderSplitTestLeftLessThanRight : public ::testing::Test {
@ -94,7 +101,8 @@ TEST_F(EncoderSplitTestLeftLessThanRight, TestInitRight) {
EXPECT_EQ(updates_array_idx, 0); // no updates received
}
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseLeft) {
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseLeftMaster) {
isMaster = true;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
@ -106,9 +114,19 @@ TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseLeft) {
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 0);
EXPECT_EQ(updates[0].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseRightSent) {
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseRightMaster) {
isMaster = true;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
@ -117,23 +135,60 @@ TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseRightSent) {
setAndRead(6, true);
setAndRead(7, true);
uint8_t slave_state[32] = {0};
encoder_state_raw(slave_state);
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 3);
EXPECT_EQ(updates[0].clockwise, true);
EXPECT_EQ(slave_state[0], 0);
EXPECT_EQ(slave_state[1], 0xFF);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestLeftLessThanRight, TestMultipleEncodersRightReceived) {
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseLeftSlave) {
isMaster = false;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(0, false);
setAndRead(1, false);
setAndRead(0, true);
setAndRead(1, true);
uint8_t slave_state[32] = {1, 0, 0xFF}; // First right encoder is CCW, Second right encoder no change, third right encoder CW
encoder_update_raw(slave_state);
EXPECT_EQ(updates_array_idx, 0); // no updates received
EXPECT_EQ(updates_array_idx, 2); // two updates received, one for each changed item on the right side
EXPECT_EQ(updates[0].index, 2);
EXPECT_EQ(updates[0].clockwise, false);
EXPECT_EQ(updates[1].index, 4);
EXPECT_EQ(updates[1].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}
TEST_F(EncoderSplitTestLeftLessThanRight, TestOneClockwiseRightSlave) {
isMaster = false;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(6, false);
setAndRead(7, false);
setAndRead(6, true);
setAndRead(7, true);
EXPECT_EQ(updates_array_idx, 0); // no updates received
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

View file

@ -33,22 +33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update updates[32];
bool isMaster;
bool isLeftHand;
extern "C" {
bool is_keyboard_master(void) {
return isMaster;
}
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!isLeftHand) {
if (!is_keyboard_master()) {
// this method has no effect on slave half
printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
return true;
}
updates[updates_array_idx % 32] = {index, clockwise};
updates_array_idx++;
return true;
}
};
bool setAndRead(pin_t pin, bool val) {
setPin(pin, val);
return encoder_read();
return encoder_task();
}
class EncoderSplitTestNoLeft : public ::testing::Test {
@ -82,19 +89,8 @@ TEST_F(EncoderSplitTestNoLeft, TestInitRight) {
EXPECT_EQ(updates_array_idx, 0); // no updates received
}
TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseLeft) {
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(0, false);
setAndRead(1, false);
setAndRead(0, true);
setAndRead(1, true);
EXPECT_EQ(updates_array_idx, 0); // no updates received
}
TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseRightSent) {
TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseLeftMaster) {
isMaster = true;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
@ -103,23 +99,38 @@ TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseRightSent) {
setAndRead(2, true);
setAndRead(3, true);
uint8_t slave_state[32] = {0};
encoder_state_raw(slave_state);
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 1);
EXPECT_EQ(updates[0].clockwise, true);
EXPECT_EQ(slave_state[0], 0);
EXPECT_EQ(slave_state[1], 0xFF);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestNoLeft, TestMultipleEncodersRightReceived) {
isLeftHand = true;
TEST_F(EncoderSplitTestNoLeft, TestOneClockwiseRightSlave) {
isMaster = false;
isLeftHand = false;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(2, false);
setAndRead(3, false);
setAndRead(2, true);
setAndRead(3, true);
uint8_t slave_state[32] = {1, 0xFF}; // First right encoder is CCW, Second right encoder no change, third right encoder CW
encoder_update_raw(slave_state);
EXPECT_EQ(updates_array_idx, 0); // no updates received
EXPECT_EQ(updates_array_idx, 2); // two updates received, one for each changed item on the right side
EXPECT_EQ(updates[0].index, 0);
EXPECT_EQ(updates[0].clockwise, false);
EXPECT_EQ(updates[1].index, 1);
EXPECT_EQ(updates[1].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

View file

@ -33,22 +33,29 @@ struct update {
uint8_t updates_array_idx = 0;
update updates[32];
bool isMaster;
bool isLeftHand;
extern "C" {
bool is_keyboard_master(void) {
return isMaster;
}
bool encoder_update_kb(uint8_t index, bool clockwise) {
if (!isLeftHand) {
if (!is_keyboard_master()) {
// this method has no effect on slave half
printf("ignoring update on right hand (%d,%s)\n", index, clockwise ? "CW" : "CC");
printf("ignoring update on slave (%d,%s)\n", index, clockwise ? "CW" : "CC");
return true;
}
updates[updates_array_idx % 32] = {index, clockwise};
updates_array_idx++;
return true;
}
};
bool setAndRead(pin_t pin, bool val) {
setPin(pin, val);
return encoder_read();
return encoder_task();
}
class EncoderSplitTestNoRight : public ::testing::Test {
@ -82,37 +89,48 @@ TEST_F(EncoderSplitTestNoRight, TestInitRight) {
EXPECT_EQ(updates_array_idx, 0); // no updates received
}
TEST_F(EncoderSplitTestNoRight, TestOneClockwiseLeft) {
TEST_F(EncoderSplitTestNoRight, TestOneClockwiseLeftMaster) {
isMaster = true;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(0, false);
setAndRead(1, false);
setAndRead(0, true);
setAndRead(1, true);
setAndRead(2, false);
setAndRead(3, false);
setAndRead(2, true);
setAndRead(3, true);
EXPECT_EQ(updates_array_idx, 1); // one updates received
EXPECT_EQ(updates[0].index, 0);
EXPECT_EQ(updates_array_idx, 1); // one update received
EXPECT_EQ(updates[0].index, 1);
EXPECT_EQ(updates[0].clockwise, true);
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 0); // No events should be queued on master
}
TEST_F(EncoderSplitTestNoRight, TestOneClockwiseRightSent) {
isLeftHand = false;
encoder_init();
uint8_t slave_state[32] = {0xAA, 0xAA};
encoder_state_raw(slave_state);
EXPECT_EQ(slave_state[0], 0xAA);
EXPECT_EQ(slave_state[1], 0xAA);
}
TEST_F(EncoderSplitTestNoRight, TestMultipleEncodersRightReceived) {
TEST_F(EncoderSplitTestNoRight, TestOneClockwiseRightSlave) {
isMaster = false;
isLeftHand = true;
encoder_init();
// send 4 pulses. with resolution 4, that's one step and we should get 1 update.
setAndRead(2, false);
setAndRead(3, false);
setAndRead(2, true);
setAndRead(3, true);
uint8_t slave_state[32] = {1, 0xFF}; // These values would trigger updates if there were encoders on the other side
encoder_update_raw(slave_state);
EXPECT_EQ(updates_array_idx, 0); // no updates received
EXPECT_EQ(updates_array_idx, 0); // no updates received -- no right-hand encoders
int events_queued = 0;
encoder_events_t events;
encoder_retrieve_events(&events);
while (events.tail != events.head) {
events.tail = (events.tail + 1) % MAX_QUEUED_ENCODER_EVENTS;
++events_queued;
}
EXPECT_EQ(events_queued, 1); // One event should be queued on slave
}

View file

@ -50,7 +50,7 @@ bool encoder_update_kb(uint8_t index, bool clockwise) {
bool setAndRead(pin_t pin, bool val) {
setPin(pin, val);
return encoder_read();
return encoder_task();
}
class EncoderSplitTestRole : public ::testing::Test {
@ -87,9 +87,6 @@ TEST_F(EncoderSplitTestRole, TestPrimaryRight) {
setAndRead(6, true);
setAndRead(7, true);
uint8_t slave_state[32] = {0};
encoder_state_raw(slave_state);
EXPECT_EQ(num_updates, 1); // one update received
}
@ -116,8 +113,5 @@ TEST_F(EncoderSplitTestRole, TestNotPrimaryRight) {
setAndRead(6, true);
setAndRead(7, true);
uint8_t slave_state[32] = {0};
encoder_state_raw(slave_state);
EXPECT_EQ(num_updates, 0); // zero updates received
}

View file

@ -36,7 +36,3 @@ bool setPin(pin_t pin, bool val) {
}
void last_encoder_activity_trigger(void) {}
__attribute__((weak)) bool is_keyboard_master(void) {
return true;
}

View file

@ -22,9 +22,6 @@
#define SPLIT_KEYBOARD
typedef uint8_t pin_t;
void encoder_state_raw(uint8_t* slave_state);
void encoder_update_raw(uint8_t* slave_state);
extern bool pins[];
extern bool pinIsInputHigh[];

View file

@ -3,6 +3,7 @@ encoder_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock.h
encoder_SRC := \
platforms/test/timer.c \
drivers/encoder/encoder_quadrature.c \
$(QUANTUM_PATH)/encoder/tests/mock.c \
$(QUANTUM_PATH)/encoder/tests/encoder_tests.cpp \
$(QUANTUM_PATH)/encoder.c
@ -13,6 +14,7 @@ encoder_split_left_eq_right_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_
encoder_split_left_eq_right_SRC := \
platforms/test/timer.c \
drivers/encoder/encoder_quadrature.c \
$(QUANTUM_PATH)/encoder/tests/mock_split.c \
$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_left_eq_right.cpp \
$(QUANTUM_PATH)/encoder.c
@ -23,6 +25,7 @@ encoder_split_left_gt_right_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_
encoder_split_left_gt_right_SRC := \
platforms/test/timer.c \
drivers/encoder/encoder_quadrature.c \
$(QUANTUM_PATH)/encoder/tests/mock_split.c \
$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_left_gt_right.cpp \
$(QUANTUM_PATH)/encoder.c
@ -33,6 +36,7 @@ encoder_split_left_lt_right_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_
encoder_split_left_lt_right_SRC := \
platforms/test/timer.c \
drivers/encoder/encoder_quadrature.c \
$(QUANTUM_PATH)/encoder/tests/mock_split.c \
$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_left_lt_right.cpp \
$(QUANTUM_PATH)/encoder.c
@ -43,6 +47,7 @@ encoder_split_no_left_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_split_
encoder_split_no_left_SRC := \
platforms/test/timer.c \
drivers/encoder/encoder_quadrature.c \
$(QUANTUM_PATH)/encoder/tests/mock_split.c \
$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_no_left.cpp \
$(QUANTUM_PATH)/encoder.c
@ -53,6 +58,7 @@ encoder_split_no_right_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_split
encoder_split_no_right_SRC := \
platforms/test/timer.c \
drivers/encoder/encoder_quadrature.c \
$(QUANTUM_PATH)/encoder/tests/mock_split.c \
$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_no_right.cpp \
$(QUANTUM_PATH)/encoder.c
@ -63,6 +69,7 @@ encoder_split_role_CONFIG := $(QUANTUM_PATH)/encoder/tests/config_mock_split_rol
encoder_split_role_SRC := \
platforms/test/timer.c \
drivers/encoder/encoder_quadrature.c \
$(QUANTUM_PATH)/encoder/tests/mock_split.c \
$(QUANTUM_PATH)/encoder/tests/encoder_tests_split_role.cpp \
$(QUANTUM_PATH)/encoder.c

View file

@ -689,7 +689,7 @@ void keyboard_task(void) {
#endif
#ifdef ENCODER_ENABLE
if (encoder_read()) {
if (encoder_task()) {
last_encoder_activity_trigger();
activity_has_occurred = true;
}

View file

@ -31,6 +31,7 @@ enum serial_transaction_id {
#ifdef ENCODER_ENABLE
GET_ENCODERS_CHECKSUM,
GET_ENCODERS_DATA,
PUT_ENCODER_TAIL,
#endif // ENCODER_ENABLE
#ifndef DISABLE_SYNC_TIMER

View file

@ -235,20 +235,27 @@ static void master_matrix_handlers_slave(matrix_row_t master_matrix[], matrix_ro
static bool encoder_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
uint8_t temp_state[NUM_ENCODERS_MAX_PER_SIDE];
encoder_events_t temp_events;
bool okay = read_if_checksum_mismatch(GET_ENCODERS_CHECKSUM, GET_ENCODERS_DATA, &last_update, temp_state, split_shmem->encoders.state, sizeof(temp_state));
if (okay) encoder_update_raw(temp_state);
bool okay = read_if_checksum_mismatch(GET_ENCODERS_CHECKSUM, GET_ENCODERS_DATA, &last_update, &temp_events, &split_shmem->encoders.events, sizeof(temp_events));
if (okay) {
encoder_handle_slave_events(&split_shmem->encoders.events);
transport_write(PUT_ENCODER_TAIL, &split_shmem->encoders.events.tail, sizeof(split_shmem->encoders.events.tail));
split_shmem->encoders.checksum = crc8(&split_shmem->encoders.events, sizeof(split_shmem->encoders.events));
}
return okay;
}
static void encoder_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
uint8_t encoder_state[NUM_ENCODERS_MAX_PER_SIDE];
encoder_state_raw(encoder_state);
// Always prepare the encoder state for read.
memcpy(split_shmem->encoders.state, encoder_state, sizeof(encoder_state));
encoder_retrieve_events(&split_shmem->encoders.events);
// Now update the checksum given that the encoders has been written to
split_shmem->encoders.checksum = crc8(encoder_state, sizeof(encoder_state));
split_shmem->encoders.checksum = crc8(&split_shmem->encoders.events, sizeof(split_shmem->encoders.events));
}
static void encoder_handlers_slave_reset(uint8_t initiator2target_buffer_size, const void *initiator2target_buffer, uint8_t target2initiator_buffer_size, void *target2initiator_buffer) {
uint8_t tail_index = *(uint8_t *)initiator2target_buffer;
encoder_set_tail_index(tail_index);
}
// clang-format off
@ -256,7 +263,8 @@ static void encoder_handlers_slave(matrix_row_t master_matrix[], matrix_row_t sl
# define TRANSACTIONS_ENCODERS_SLAVE() TRANSACTION_HANDLER_SLAVE_AUTOLOCK(encoder)
# define TRANSACTIONS_ENCODERS_REGISTRATIONS \
[GET_ENCODERS_CHECKSUM] = trans_target2initiator_initializer(encoders.checksum), \
[GET_ENCODERS_DATA] = trans_target2initiator_initializer(encoders.state),
[GET_ENCODERS_DATA] = trans_target2initiator_initializer(encoders.events), \
[PUT_ENCODER_TAIL] = trans_initiator2target_initializer_cb(encoders.events.tail, encoder_handlers_slave_reset),
// clang-format on
#else // ENCODER_ENABLE

View file

@ -66,7 +66,7 @@ typedef struct _split_master_matrix_sync_t {
#ifdef ENCODER_ENABLE
typedef struct _split_slave_encoder_sync_t {
uint8_t checksum;
uint8_t state[NUM_ENCODERS_MAX_PER_SIDE];
encoder_events_t events;
} split_slave_encoder_sync_t;
#endif // ENCODER_ENABLE